SUBJECT:ELECTRICAL MACHINE SEMESTER:4TH

1ST CHAPTER- ELECTRICAL MATERIAL

CONDUCTING MATERIAL

· Any material which allows electrical current to pass through it is called conductor.

- The material which offers low resistance path to the flow of electrical current, All pure metals are good conductors of electricity
- Conducting material used for making wires or cables that will carry electricity or to making conducting parts of electrical equipment, machines & Accessories etc.

Conductor -

Any material that allows electric current to pass through it

Insulator -

Any material that does not allow electric current to pass through it ·like the protective coating on wires

•cloth

•wood

SEMICONDUCTOR MATERIALS

Material	Example	ρ (Ω m	
Conductor	Copper	10-6	
Semi-conductor	Germanium	0.5	
Semi-conductor	Silicon	500	
Insulator	Mica	10^{10}	

UNITS

Resistivity, ρ is given by: $\rho = (RA)/L = \Omega m^2 / m = \Omega m$

Conductivity, G is given by: $G = 1/\rho = \Omega^{-1}m^{-1} = S$ (Siemens)₁

Insulating material

Insulating Materials

Dielectric material

Magnetic material

2ND CHAPTER-D.C GENERATOR

DC GENERATOR

Flow of current

© Byjus.com

3RD CHAPTER-D. C. MOTORS

4TH CHAPTER-AC CIRCUITS

$$I = \frac{V}{\sqrt{(R)^2 + (X_L)^2}} = \frac{V}{Z}$$

$$\omega \qquad \text{where } Z = \sqrt{\frac{(R)^2 + (X_L)^2}{(R)^2 + (X_L)^2}}$$
is called impedance
$$\phi = \tan^{-1} \frac{X_L}{R} \quad \text{Power, } P = VI \cos \phi$$

5TH CHAPTER-SINGLE PHASE TRANSFORMER

 6^{TH} CHAPTER- THREEPHASEINDUCTIONMOTORS

7^{TH} CHAPTER-SINGLEPHASEINDUCTIONMOTORS

AUTO TRANSFORMER

WHAT IS AUTOTRANSFORMER?

Types, Starting, Efficiency, Applications

INSTRUMENT TRANSFORMERS

8TH CHAPTER-A L T ERN A TO R

